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Gravity Gradients at Satellite Altitudes 

B. CHOVITZ, J. LUCAS, F. MORRISON 

Geodetic Research and Development Laboratory 
National Geodetic Survey 

ABSTRACT. The avahability of detailed worldwide gravity anomaly information in 
the form of 1" square blocks makes possible the computation of gravity gradients at 
close (under 300 km) altitudes, thus indicating the sensitivity required of a satellite-borne 
gradiometer. As a first step, the gravity anomaly data are transformed to spherical har- 
monics up to degree and order 75. A comparison with the global rule-of-thumb, 10-5/1*, 
for the r.m.8. magnitude of an individual normalized harmonic of degree 1 shows close 
agreement for 15 d 1 d 75. Satellite orbits are then generated by numericd integration, 
the time step being set to a sampling rate of the gradiometer, and gravity gradients can 
be computed at this interval. A coordinate system is chosen to correspond to the axis of 
rotation of the instrument. 
Results of simple averaging indicate that to distinguish the combined harmonlcs of a 
single degree in the range of 60 or 70, a sensitivity of better than 0.01 Eiitvos uni t  is required, 
and to pick up the total band of harmonics between degrees 60 and 70, a sensitivity of 
0.02 Eotvos unit is needed. However, a detailed harmonic analysis making use of the 
maximum entropy technique shows that specific components of degree around 70 with 
amplitude higher than 0.03 Eotvos unit can be distinguished. A gradiometer sensitive to 
0.01 Eotvos unit therefore should provide useful information. 
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1. GRAVITY ANOMALIES TO SPHERICAL 
HARMONICS 

Among the various methods being considered 
for improving knowledge of the global gravity field 
by satellites, gravity gradiometry is one of the 
most promising (Kaula 1969). Its advantages are 
independence of tracking stations and other 
satellites, near-continuous data gathering, and 
sensitivity to the higher harmonics of the field. 
However, it requires a dedicated satellite and an 
instrument whose precision appears to strain the 
limit of current technological capabilities. 

The purpose of this study is to determine the 
magnitude of gravity gradients at low satellite 
altitudes (about 300 km) so that the sensitivity 
level required of a satellite gradiometer instrument 
can be ascertained. Previous quantitative analyses 
of this nature (Kaula 1971, Forward 1972) were 
based essentially on Kaula's rule-of-thumb, which 
expresses the magnitude of the individual normal- 
ized harmonic coefficient of degree 1 as 10-5/12. 
Other empirical rules of this nature, e.g., by Meissl 
(1971), differ very little in substance. For the effect 
of all harmonics of degree 1, Kaula (1971) estimated 
about 
gal/cm) for l=40, and 0.5 X 10-2 EU for 1=75 at 
260-km altitude. Forward's (1972) figures are 
roughly twice those of Kaula, because of a different 
method of summation and a slight variation in the 
power law. 

The solid line in figure 1 depicts the (nondimen- 
sional) magnitude of the set of normalized spherical 
harmonics of degree 1 according to Kaula's rule- 
of-thumb. 

The above estimates are global averages based 
on an empirical rule from which wide deviations 
possibly could occur in specific areas. We first 
utilized a published (Aeronautical Chart and In- 
formation Center 1971) set of approximately 20,000 
1°X 10 gravity anomalies based on observed data, 
covering about 30 percent of the world. Subse- 
quently we obtained several thousand additional 
1" X 1" anomalies, which increased the coverage 
considerably. Although the quality of material is 
variable, coverage over certain land areas, such 
as the United States and Europe, is quite dense 
and accurate. It could, therefore, be considered 
that the field is sufficiently known over these spe- 
cific regions so that gravity gradient values at 
altitude could be judged to assume their actual 

EU (Eotvos unit - 1 Eotvos unit= 

values and vary as a function of position. 
Because a satellite-borne gradiometer would 

sample the field approximately every 30 seconds 
along the path of a satellite orbit, our approach 
was to simulate typical satellite orbits over areas 
of dense coverage, and compute from the data 
gravity gradients at discrete intervals along the 
path. Orbital procedures previously programmed 
in the Geodetic Research and Development Lab- 
oratory (Gulick 1970, Witte 1971), which already 
included the computations of exactly those quan- 
tities desired, could be used with little or no alter- 
ation if the gravitational field were expressed in 
terms of spherical harmonics. 

Therefore, the first step in the computation was 
the conversion of the set of gravicy anomalies Ag 
to spherical harmonics of degree I and order m by 
the standard formula 

where the overbar indicates thEt the spherical 
harmonic coefficients CIm, Sirn and Legendre 
polynomials p l m  are normaked; 4 and A are 
geocentric latitude and longitude, a is the Earth's 
semi-major axis, and p is the Newtonian gravita- 
tional constant times the Earth's nass. 

But this requires integration over the entire 
surface, Z, of the Earth, and there were gaps in 
the sets of lox 1" anomalies. A set of 5" X 5" mean 
anomalies obtained from Air Force Cambridge 
Research Laboratories was used to fill these gaps. 
The equation was then computed in the following 
manner: The integration was rep:aced by a sum- 
mation over 1" squares for the cmtire globe. If Ag 
was available for a given 1" square from the 1" set, 
it was used; otherwise Ag was assigned the value 
of the 5" square in which it fell. The complitation 
was carried out through 1, m=88. However, the 
series could be applied usefully only through 75th 
degree and order, since numerical problems caused 
the magnitudes of the coefficients to diverge up- 
ward beyond this point. For this study, it was 
judged that the series through 75th degree was 
sufficient, so no attempt has beer made to isolate 
and correct the cause of this divergence. 

In figure 1 the set of discrete points plot 
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The crosses and circles designate the values based 
on the smaller and larger sets of 1” anomalies, 
respectively. The lesser set yielded magnitudes 
about 25 percent less than the lO-Yl* curve, but 
this deficiency is almost completely eliminated by 
the larger set. This is an excellent confirmation of 
Kaula’s rule-of-thumb. The discrepancy of the 
smaller set probably is due to artificial smoothing 
introduced by the more extensive use of the 5” 
anomalies. 

2. SPHERICAL. HARMONICS TO GRAVITY 
GRADIENTS 

At this point we have available a set of spherical 
harmonics up to degree and order 75 with which to 
calculate the gradients of gravity at any external 
point we choose. Since a gradiometer will sample 
the field at a given rate (about 30 seconds) along an 
orbit about 300 km high, we simulated such orbits, 
choosing paths that traversed over areas of dense 
lox 1” anomaly coverage. The satellite orbit is 
generated by a numerical integration program in 
which the time steps of the integration are set to 
the sampling rate of the gradiometer. A position is 
calculated for each sampling time, and the six 
distinct gravity gradient components are computed 
as a function of position. 

Gravity gradients are conveniently defined and 
manipulated by tensor formalism. The gravity 
gradient is the second covariant derivative of the 
potential, which for a Cartesian coordinate system 
is the matrix of second partials of the potential N ,  

This matrix is symmetric, and since Laplace’s 
equation holds it has but j v e  independent quanti- 
ties. Laplace’s equation 

V Z N =  0 

may also be written 

Trace ( N w )  = 0. 

The reward in using the tensor formalism is that 
equations and definitions are easily transformed to 
another coordinate system indicated by an * (aster- 
isk) in the following equations: 

axq 
J : = a Z * u  

In matrix notation this is 

N *  = J’NJ’T, 

where J’ is the inverse of the Jacobian matrix. 
Derivations of these formulas and others are given 
by Hotine (1%9), who named the gravity gradient 
the “Marussi tensor.” 

Comparisons are made along the same trajectory 
between gradients obtained from spherical harmonic 
geopotential models truncated at both low and high 
degrees. The differences between the gravity 
gradients will provide an indication of the con- 
tribution made to the gravity gradient by the higher 
degree harmonics. 
All the orbit computations are done in an inertial 

coordinate system. The components of Nq, may be 
printed out in the inertial system, or it may be 
transformed into either of two other coordinate 
systems: 

A. The “Gravity” Coordinate System 
The 3-axis is defined by the local vertical, i.e., 

where g is the force of gravity expressed as a vector, 
and g its magnitude. Then the 2-axis is defined by 
the projection of the satellite’s velocity vector, 
i, onto the 1-2 plane (fig. 2). 

B. The “Orbital” Coordinate System 
The 3-axis is defined as before, but the 2-axis is 

defined by the intersection of the orbital plane with 
the 1-2 plane (fig. 3). Note that the orbital plane is 
defined by the angular momentum vector 

h=rX r. 

For the “gravity” or “orbital” coordinate systems 
the gradient’takes on a highly diagonal form. If 
only the central force field were present ( N = p l r ) ,  
for these coordinate systems, z=y=O, z = r .  Then 
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FIGURE 2. -The “gravity” coordinate system. 

For a more realistic gravity model, the off diagonal should be in the higher frequencies. For a close 
terms are of the order of the oblateness, but the satellite, the ground track is about 7.3 km/s, which, 
diagonal terms sum to zero by Laplace’s equation. for a resolution of 250 to 1,200 km, implies that the 

Direct comparison can be made between gradi- wavelengths of interest will be about 30 to 180 
ents computed for the same time and nearly same seconds. For an integration time step of 30 seconds, 
trajectory. However, the comparison can be made this indicates a range of 1 to 6 time steps. 
.more effectively by doing a harmonic analysis of In choosing runs for the determination of gravity 
the gradients. The differences between gravity gradients, our purpose was twofold: first, to vary 
gradients derived from high and low degree fields the gravitational model by selection of maximum 
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FIGURE 3. -The "orbital" coordinate system. 

degree and order (up to 75) so that results from 
different models could be compared; second, to 
pick initial orbital conditions to generate a trajectory 
such that positions at which the gradients are 
computed would reflect as much as possible the 
effect of accurately observed data. Our practice 
was, for a given set of initial conditions, to run 
three gravitational models, of maximum degree and 
order 25,70, and 75, for 24 time steps of 30 seconds 

each (i.e., a 12-minute time arc, covering a ground 
path of about 5,300 km). Initial conditions were 
chosen such that the satellite trajectory began at 
300-km height and passed over selected areas of the 
Unite States and surroundings, or Europe and North 
Africa. Although the program had the ability to 
handle other perturbations, such as drag, radiation 
pressure, and hi-solar  gravitation, these options 
were not employed, so subsequent positions of the 
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FIGURE 4. -Satellite p a t h  corresponding to tables 4 and 5. 

hypothetical arc were not completely realistic. 
Plots of satellite paths chosen and points at  which 
the gravity gradient computations were made are 
shown in figures 4 and 5. 

A sample computer output is displayed in figure 
6. For each point at  which the gravity gradient is 
computed, a grouping of five lines includes the time, 
and the position, velocity, and acceleration of the 
satellite in the particular coordinate system chosen 
(in this case the “gravity” coordinate system). In 
addition various orbital information is presented. 

The six gravity gradients are contained in the ma- 
trix at the end of the top three lines. 

3. SIMPLE AVERAGING OF RESULTS 

Tables 1 through 5 illustrate the results at 2.5- 
minute intervals obtained with the smaller data set. 
Differences of gravity gradient components of dif- 
ferent models’are listed. The components are all in 
the “gravity” system. Tables 1 through 4 compare 
results from three models, viz., maximum I of 25, 
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FIGURE S.-Satellite p a t h  corresponding to tables I ,  2 ,  and 3. 
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70, and 75, respectively. In addition, table 5 lists 
results involving also 60, 61, and 71. Table 6 con- 
denses tables 1 through 5 by showing the maximum 
and r.m.s. difference over a particular path. 

The same set of orbital computations were 
carried out with the larger set of data, and table 7 
presents a summary of results corresponding to 
table 6. Although the r.m.8. values are now slightly 
higher, the increase is not significant. 

These computations indicate that 0.01 EU is of 
threshold sensitivity, when considering the magni- 
tudes of a range, 71 G 1 G 75, of sums of harmonics, 
and that better than 0.02 EU is needed for the range 
61 to 70. These figures tend to confirm the previous 
results of Forward and Kaula, and the general 
validity of Kaula’s rulesf-thumb. They also imply 
the absence of marked deviations from this rule up 
to at least 1 = 75. 

4. HARMONIC ANALYSIS OF RESULTS 

To make a more refined analysis, the simulated 
data were subjected to a harmonic analysis. By 
this means we .were able to ascertain not only the 
fact that there were differences in the gravity 
gradients produced by the different geopotential 
models used, but also the structure of these differ- 
ences. Two recently derived spectral estimators 
were used, the maximum entropy (MEM) and the 
maximum likelihood (MLM) (Lacoss 1971). 

The data z ( t )  are given at N times uniformly 
spaced by an interval At: 

z ( t )  = col (XI, 2-2, . . . , X N ) .  

Before the processing, the mean value ( x )  is sub- 
tracted from the data 

1 N  
(2 )  = XI  

i= 1 

The algorithms for both these spectral estimators 
begin by generating a sequence of linear error filters 
from the data. 

The value of the error Ulb at a point i predicted by a 
backward linear errorfilter of length b is 

vlb= 2; - 1;; 

(1) 
= Gt(g’; i, b ) ,  

where ;; = predicted value of x ; ,  

is the filter, and 

- [(x’; i, b)=col(xj, x ; + ~ ,  . . . , z;,,). 

The error Ulb is the departure of the data from the 
X ;  predicted by the linear prediction filter which is 
obtained by setting the first component of r b  to 
zero and changing the signs of the y’s. 

A foward error filter involves the use of values 
preceding the one predicted: 

A sequence of filters of increasing dimension, 
r b ,  b=O, . . ., MSN-1, is computed by a 
method due to J. P. Burg (1967,1970). 

r o =  1 

. . .  

Each filter is a solution of the discrete Wiener- 
Hopf equations (Yule-Walker equations - Wiener 
1942) as modified for an error filter: 

(a) Each filter is related to the previous one in the 
sequence by the Levinson recursion procedure 
(Levinson 1947). 
(b) At each stage of the Levinson recursion, a 
single new coefficient ‘yii is left undetermined. 
By requiring that the sum of the mean square 
prediction errors from the forward application 
and the backward application of the filter be 
minimized, a value of ‘yii is obtained (J. P. Burg 
1%7, 1970). 
Only the given data a& used to generate the 

filters; no explicit extension of the data is assumed. 
The covariance & of g’ for a lag of nAc and the 
powerpn (mean square) of the residual errors are 
computed from &a, Pn-1; 6 - 1 ,  . . . ,40 by formulas 
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ancillary to Levinson's method. Covariances are 
estimated indirectly by means of the directly esti- 
mated filter coefficients rather than by the usual 
procedure of assuming an extension of the data 
and then computing estimates of covariances and 
r n  andpn in turn from them. 

One of the consequences of using the Wiener- 
Hopf equations to generate the filters is that the 
errors (from a forward or backward application of 
the filter) % = ( o m ,  um, . . . , urd have zero 
covariance for the lags qAt, q = l ,  . . . , 6. 
As 6 increases pb approaches the state of being 
white noise (the covariance function of white 
noise is the Krijnecker delta function) and the 
final error filter ~ N - I  is referred to as a whitening 
jilter. 

If we define 

Qb= 

- &= col(1, exp j A ,  exp 2jA, . . . , exp 6jA), 

c 

1 /pb 0 0 . . .  0 

0 1/pb-l 0 0 

0 0 1Ipb-2 0 

0 0 0 . . . 1/P1 

where j =  t/=I, and 

A =   IT f A t ,  

the discrete Fourier transform of r b  is 

The discrete Fourier transform of g' and are 

The coefficients in the product of the two poly- 
nomials in exp jX,  F g  and FY, are given by eq (2). 
Therefore 

Thus 

Burg (1967, 1970) has shown that eq (3), used with 
a Wiener-Hopf whitening filter r , produces the 
spectrum maximizing the entropy 

S= p n  P w d f  

where P b ( f )  is the power spectral density in the 
Nyquist band 0 S f G w,  w=1/2At,  and p b  is the 
power in the residual errors (independent of fre- 
quency for white noise and nearly constant even 
when b < n). 

0 

1 

yb-lI 2 

'b-1, b-2 

0 

0 

1 

. . .  

. . .  0 

0 

0 

. . .  n 
Then R;l, the inverse of the covariance matrix, 
is given by 
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The MLM estimator is, then, 

where the star indicates complex conjugate. The 
estimator Lj is also data-adaptive, because it, too, 
depends on the filters r b ,  r b - I ,  etc. In general the 
function L b ( 7 )  is smoother than 9 ( y )  and displays 
less pronounced peaks. A relationship between 
& ( y )  and L b ( y )  has been derived by Burg (1972), 
who introduced P b ( Y ) .  

Once the filter coefficients are computed, values 
of the spectral estimate for [ N / 2 ]  points equally 
spaced in the frequency domain are computed, 
where 

[ ( N - 1 ) / 2 ,  N odd 

The sequence of frequencies used Ifq} is defined by 

An array is used to store the resulting tabulation 

expedient to attempt to find these maxima through 
the derivative of P b ,  or correspondingly, to find 
maxima of L b .  The roots of the derivatives could 
not be found analytically, but only by a numerical 
procedure such as Newton-Raphsen. 

Detecting frequency shifts in the gravity gradient 
components due to different gravity fields is only 
part of the problem. It also is necessary to estimate 
the amplitude of each of the frequencies in the sig- 
nal. Some numerical experiments proved that the 
use of the amplitude of the MLM (maxima of L b )  

was not a satisfactory way to estimate signal 
component amplitude. A more rigorous and re- 
liable amplitude estimate would have been to 
perform a quadrature of the spectrum in the vicinity 
of the peaks. Since most peaks were well separated, 
we chose to use a simple procedure-performing 
a quadrature on the data. We computed by the 
trapezoidal formula (Abramowitz and Stegun 1964) 

of spectral estimates. A “binary chop” technique 
is used to determine possible maxima. The array 
is searched for maxima by testing for the conditions 

If the signal is of the form 

z(O)=c COS pO+s sin p0, 
fvf) 3 4 ( f - 1 )  

PjG) a Pj(fq+i 1. sin 4wp s 
we will have 

1+--- (cos 4lrp- 
For whichever interval the difference is smaller, 4lTp 4wp 
say (9 ,  g f  I ) ,  an interpolated value is found 

(cos 4mp- 111. [ sin 4lTp 4?Tp 4wp 
sI(p)=s 1---- 

The amplitude of the signal is 
and P b ( f q +  112) is computed. If a peak is not detected 

the sequence p b ( f p - 1 ) ,  p b ( f q - I l o ) ,  pa(&). If the 
test fails again, then it must be that p b ( h )  2 

pb(fg+ 112) and 3 P b ( f -  112) 9 SO that the by successive approximations 
new test interval is LfP-113, fq+1/2]. The interval 

Pb(fq-I1p)  is computed. Then the test is made on A(p)=  (cp+SZ)1/2. 

We can solve for A(p)  in terms of t ( p )  and i ( p )  

is reduced until the spectral values are all within 
1 percent of each other, or the interval has been 
reduced by a factor of 2’O. By this purely numerical 
means, the maxima of P b ( f )  are found. It is not 

+- 23 (Cos4mp-l)+0(1/p~) 
lrcl 
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All the signal components need not be mutually 
orthogonal over the data span; but no correction 
was computed for this. 

The gravity gradients could have been computed 
by analytic means, using an extension of techniques 
developed by Douglas and Wagner (1968) to estimate 
the amplitudes of resonance perturbations for 
satellites. The quantity of algebraic manipulation 
and programming required does not make this 
method attractive, nor does the existence of 5,776 
spherical harmonic coefficients of degree less than 
or equal to 75, each of which contributes one or 
more components to the gravity gradients. With 
gravity gradients there is no dynamical effect such 
as resonance that serves to amplify the effects of 
certain harmonics, so all are thoroughly mixed in 
the signal. 

Another approach would have been to do a com- 
plete simulation of an adjustment using generated 
gradiometer data for a complete coverage of the 
entire earth. Again, the amount of computation 
would have been prohibitive. The question of 
parameterizations for the gravitational field would 
become paramount, since the gradiometry can 
give useful information about short wavelengths 
in the gravity fiel’d, but is unlikely to successfully 
resolve the 5,776 spherical harmonic coefficients. 

The number of sinusoids with amplitudes 
greater than 0.01 EU, and the amplitudes them- 
selves, give us some idea of the amount of informa- 
tion in the signal. One orbit was computed for a full 
revolution, instead of for just a short arc, to obtain 
some idea of how much more information comes 
from more extensive coverage. Tables 10 and 11 
give a partial tabulation of these results. 

The results in tables 8 through 11 and figures 
7 through 10 confirm, in general, the initial evalua- 
tion of the results. The harmonic analysis does 
reveal the existence of a large number of compo- 
nents in the gravity gradient that are well sepa- 
rated in frequency, mostly with amplitudes a little 
larger than 0.03 EU. This more refined analysis 
indicates that an instrument sensitivity of 0.01 EU 
will not be just at the threshold of yielding useful 
information. on the short wave components of the 
geopotential, but well beyond it. 

For the purposes of this study we ignored .the 
fact that the gravity gradient is a signal with five 
independent, but correlated channels. To simulate 
the data recording process, we analyzed the gravity 
gradient components in the “gravity” coordinate 
system, which is’ still somewhat different from the 
signal anticipated by Glaser (1971). Our results will 

be more adaptable, however, to variations in the 
instrumentation configuration. 

These spectral analysis methods should be useful 
for examining actual data when it becomes avail- 
able. Comparisons with simulated data in number 
of peaks present and their amplitudes could be 
made. This would allow one to assess the quality 
of the data before attempting to use it in any kind 
of solution for gravity or geopotential. 

This study was partially supported by NASA 

Allen Pope of the Geodetic Research and Devel- 
opment Laboratory supplied much of the theory for 
the harmonic analysis. 
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TABLE 1. -Gravity gradient component differences for satellite ground track starting at I$ = 70" N, A = 20" E, 
and initial azimuth = 210" 

I 70-25 I 2% 
5 
7% 
10 
12% 

175-70 I 245 
5 
7% 

10 
1245 

0.0983 
.@lo6 
moo 
.0891 
.0024 

0.0254 
.O080 
.0061 
.0007 
.0174 

O.oQ91 
.0093 
.0414 
.m24 
.a57 

0 . m 1  
.ooo6 
.0049 
.OS9 
.m 

0.0372 
.0507 
. a 0  
.2074 
.0140 

0.0182 
.0190 
.0137 
.OS2 
.0218 

0.0491 
.1976 
.a356 
.1E4 
.o090 

0.0074 
.0033 
.0135 
.0171 
. m 3  

0.0507 I 

.a11 

.0361 

.0780 

.1254 

0.0098 
. W 6  
.0037 
.0127 
.0043 

0.1355 
.OlOI 
.&o 
.2w 
.0116 

0.0436 
. .a70 
.0197 
.0045 
.0392 

TABLE 2. -Gravity gradient component merences for satellite ground track starting at 4=600 N, A =  10" E, 
and initial azimuth= 1800 

At ANP 
I l a -  Li I (min.) 

(1.1) (2.1) (2.2) (3.1) ( 3 2 )  (33)  

I 70-25 I 2% 0.1506 0.0598 0.1376 0.0289 0.0150 0.2882 
5 .a57  .0324 .0529 .a380 .0764 .W72 
745 .0938 .0123 .1357 .0151 .1262 .2295 

10 .0784 .0546 .0850 .0525 .m .1634 
12% .0636 .0320 .M39 .0159 .0219 .m . 

I 75-70 I 2% 0.0068 0.0019 0.0035 0.0028 0.0191 0.0033 
5 . m 5  .0044 .0078 .0110 .0103 .m 
7% .0215 . m 7  .m .0075 .0270 .0279 

10 .0072 .m .0035 .0133 . o m  . o m  
12% .a72 . a 1  .0046 .0194 .0110 .0118 

TABLE 3.--Cravity gradient component differences for satellite ground track starting at 4=60" N .  A=Oa E ,  
and initial azimuth= 1800 

~~ 

I 70-25 I 2% 
5 
7% 

10 
12% 

175-70 I 2% 
5 
7% 

10 
12% 

0.0694 
.0751 

.0390 

.0547 

.047a 

0.0067 
.0044 
.m 
.0033 
.0074 

0.0557 
.0372 
.0171 
.0229 
.01% 

0.0061 
.m 
.oO40 
.m 
.o020 

0.0240 
.0631 
.0285 
.OS14 
.lo25 

0.0110 
.0141 
.0124 
.0078 
.0065 

0.1017 
.m 
.1199 
. o m  
.0626 

0.0126 
. W 1  
.ooo6 
.0162 
.m 

0.0195 
.0919 
.1894 
.w50 
.0337 

0.0041 
.0089 
.m 
.a75  
.m 

0.0455 
.0120 
.0763 
.0124 
-1573 

0.0177 
.0184 
.0179 
.0111 
.0010 



TABLE 4.-Gravity gradient component differences for satellite ground track starting at tp=W W loo" W, 
and initial azimuth= 1800 

I 70-25 I 2H 
5 
7H 

10 
12H 

I 75-70 I 2% 
5 
7H 

10 
12% 

0.0355 
.a16  
.0947 
.0342 
.0232 

0.0103 
.0123 
.0044 
.m 
.0021 

0.0054 
.Mal 
.1224 
.E53 
.0262 

0.oOu) 
.0056 
. m 7  
.a72  
.0051 

0.0017 
.0072 

. w 7  

.M02 

0.0155 
.m 
.m 
.0010 
.oOu) 

.i4ia 

0.0700 
.0036 
.0827 
.MI27 
.a367 

O.ooo4 
.0011 
.0179 
.OH5 
.0084 

0.0012 
.0369 
.0456 
.0119 
.0209 

O.ooo2 
. o m  
.0101 
.m 
.0031 

0.0372 
.0056 
.2365 
.0829 
.0030 

0.0259 
.m 
.0106 
.0004 
.m149 

TABLE 5. -Gravity gradient component differences for satellite ground track starting at tp=50° N ,  h=125" W ,  and initial azimuth=9O0. 

160-251 

161-60 I 

17061 I 

171-70 I 

175-71 I 

2% 0.0420 
5 .a73  
7% .m 

10 .ooo6 
12% .oia7 

2% .065 
5 . m 7  
7% .0016 

10 .0045 
12% .ma 
2% .ow 
5 .0042 
7% .OO80 

10 .0022 
12H .0189 

21A .MI17 
5 .0033 
7% .o009 

10 .ma 
12% .m 

2% .m 
5 .0131 
7% .m 

10 .0118 
12% .0163 

0.0089 
.0123 
.m 
.0219 
.0178 

.0028 

. m 3  

.0051 

.m 

.oi7a 

.0036 

.ma 

. m 7  

.0031 

.0025 

.0017 

.0007 

.MI1 1 

.MI67 

.0016 

.0045 

.0053 

.@I28 

.0038 

.0053 

0.0270 
.0820 
.0202 
a 1 9  
.W% 

.0045 

.0114 

.o090 

.0035 

.MI47 

.0015 

.0183 

.oOol 

.0159 

. a 3  

.0038 

.ax3 

.0043 

.m42 

.0025 

.0070 

.o030 

.MI61 

. m 2  

. m 1  

0.0343 
.0382 
.0356 
.m 
.m 
.ooia 
.0184 
.Mu5 
.o020 
.@I74 

A232 
.0232 
. om 

.0181 

.007a 

.mi5 

.0034 

.0029 

.ooo5 

.oQ58 

.0049 

.0032 

.0079 

.m 

.0168 

0.0239 
.Q565 
.OM 
.1169 
.m 
. W 1  
.0083 
.0119 
.0138 
. o m  

.0031 

.0654 

.0055 

.m 

.0273 

.0038 

.0064 

.MI47 

.m 

.o060 

.0049 

.m 

.0064 

. a 6  

.oO05 

0.0149 
.0747 
.0112 
.0225 
.W1 

. o m  

.0150 

.0074 

.0011 

.a19  

.0068 

.0226 

.0081 

.m 

.a6 

.0077 

. w 2  

.0080 

.0054 

.0040 

.0161 

.0060 

.0140 

.OM 

.oiai 
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TABLE 6.-Summary of maximum and r.m.s. differences of gravity gradients of 
various models for smaller data set 

~ ~~ 

Period MEM Peak Amplitude .. 
(minutes) Pi0 (EU)' (EU) 

d A  82. I 70-25 I I 75-70 I 
max. r.m.s. max. r.m.s. 

70 20 210 0.02966 0.0949 0.0436 0.0163 
.0117 
.0094 
.0094 

Period MEM Peak Amplitude 
(minutes) Pro (EU)' (EU) 

60 10 180 2882 
60 0 180 .1894 
50 -100 180 .2365 

50 -125 90 0.1169 
.0184 
.OB2 
.m 
.0164 

.loo5 

.07% 

.0674 

0.0402 
.0085 
.OH6 
.0042 
.0082 

.0279 

. o w  

.0259 

I 60-25 
161-60 
I7041 
171-70 
175-71 

TABLE 7 .  -Summary of maximum and r.m.s. differences of gravity gradients of 
various models for larger data set 

Q A  Be. I 70-25 I I 75-70 I 
max. r.m.s. max. r.m.8. 

70 20 210 0.3675 
60 10 180 2901 
60 0 180 .1939 
50 -100 180 .3269 

50 -125 90 0.1160 
.0133 
.0462 
. o m  
.0217 

0.1149 
.lo67 
.0769 
.0891 

0.0481 
.0058 
. o m  
.0058 
. o m  

0.0418 0.0167 
.0365 .0153 
.0218 .0083 
.0229 .0088 

I 60-25 I 
161-60 I 
I7041 I 
171-70 I 
175-71 I 

TABLE 8.-Amplitudes of harmonic components of gravity gradients Nu for fie/& of degree and order 25, 70, 7fi; the 
trajectory is the one described in the caption of table 2 

Degree and order 25 
14.6 
8.7 
5.1 
4.1 
1.9 
1.6 
1.3 

Degree and order 70 
13.2 
6.8 
4.2 
3.1 
2.4 

5.8 x 10-4 

1.8 x 10-4 

7.4 x 10' 
9.2 x 10-3 

1.2 x 10-80 
3.3 x 10-11 
8.2 X 

7.2 x 10-3 
5.4 x 10-4 
5.1 x 10-4 
6.6 X 

3.5 x 10-3 

0.04 
.04 
.05 
.02 
.0018 
A018 
.0017 

0.03 
.017 
.016 
.033 
.022 

1.9 
1.7 
1.4 

Degree and order 75 
13.5 . 
7.0 
4.5 
3.1 
2.4 
1.86 
1.57 
1.33 
1.22 

5.3 x 10-3 
4.4 x 10-5 
3.5 x 10-a 

6.5 X 10-3 

1 .o x 10-3 
6.8 X 10-a 
6.9 X 10-3 
1.2 x lo-' 
6.6 X 10-4 
6.3 X 
1.3 X 1 W  

8.0 x 10-4 

.017 

.014 

.005 

0.034 
.018 
.m3 
.032 
.024 
.018 
.012 
.006 
.a5 
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TABLE 9.-Amplitu&s of harmonic components of gravity gradient NZZ for Jieldr of degree and order 25. 60. 61.70, 71. 75; 
trajectory is the one described in the caption of table 5 

Period MEM Peak Amplitude 
(minutes) Pro (EUp (EU) 

Degree and order 25 
24.2 
12.7 
5.8 
4.7 
3.6 
1.57 
1.42 
1.20 

Degree and order 60 
23.5 
11.3 
4.8 
3.4 
2.9 
2.0 
1.78 
1.69 
1.06 

Degree and order 61 
23.6 
11.2 
4.7 
3.1 
1.86 
1.66 
1.52 

11.3 
.27 
.0067 
.033 
. m 3  

1.2 x 10-0 
2.6 X 10-10 
1.2 x 10-8 

14.1 
.15 
.065 
.016 
.0012 
.a75 
.028 
.018 

2.5 X 10-10 

36.8 
.27 
.022 
.0043 
.0056 
.o050 

3.9 x 10-5 

1.41 
1.23 
0.41 
0.20 
0.15 
0.12 
0.08 
0.09 

1.43 
.97 
.13 
-15 
.24 
.18 
.15 
.13 
.MI 

1.43 
.95 
.20 
.32 
.05 
. l l  
.13 

Period MEM Peak Amplitude 
(minutes) Pzo (EUY (EU) 

Degree and order 70 
23.2 
4.6 
3.3 
2.3 
1 .a2 
1.43 
1.34 

Degree and order 71 
23.0 
4.6 
3.2 
2.3 
1.84 
1.65 
1.39 
1.26 

Degree and order 75 
23.4 
11.4 
4.6 
3.3 
1.86 
1.56 
1.40 
1.22 

12.75 
.040 
.0056 

.a25 

.a16 

9.8 x 10-5 

5.8 x 10-5 

11.7 
.035 
.0054 

1.4 x 10-4 
,0035 

5.6 x 10-4 
.0088 

4.5 x 10-0 

18.6 
.095 
.037 
.a70 
.012 

.m 
2.4 x 10-4 

8.2 x 10-5 

1.44 
.23 
.27 
.09 
.ll 
.07 
.12 

1.44 
.26 
.30 
.ll 
.09 
.10 
.12 
.09 

1.43 
.98 
.23 
.25 
.06 
.12 
.10 
.ll 
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TABLE 10. --Spectral analysis of simulated gravity gradients for a full revohtion. These are results for the N3, component. 
Comparison is made with 30-minute data spans using 25,25,fieldc and 75, 75 &l&. The trcrjectoty is the one 
described in the caption of table 1 .  The complete revolution is a forward extension of the short arc of table 1 .  

Period MEM Peak Amplitude Period MEM Peak Amplitude 
(minutes) Pi0 (EU)' (EU) (minutes) Piw (EU)' (EU) 

Degree and order 25 
20.8 
10.3 
7.0 
4.4 
3.4 
2.7 
1.87 
1.36 
1.15 

Degree and order 70 
11.2 
4.0 
2.7 
2.3 
1.9 
1.57 
1.36 

Degree and order 75 
11.0 
4.1 
2.7 
2.2 
1.83 
1.53 
1.21 

0.061 
.OM 
.004 
.ooQ 

1.0 x 10-4 
2.7 X 10-0 
1.5 X 10-o 
1.0 x 10-0 
4.0 X 10-10 

0.070 
.007 
.a32 
.011 
.004 
.oO05 
.ooO1 

0.111 
.011 
.036 
.011 
.001 
.005 
. m 1  

0.13 
.13 
.07 
.015 
.om 
.007 
,005 
. O M  
.005 

0.19 
.07 
.07 
.05 
.036 
.007 
.004 

0.19 
.07 
.07 
.05 
.022 
.m 
.004 

Degree and order 75 one complete revohtion 
85.1 4.0 
21.1 .0036 
15.0 .0033 
11.3 .0032 
8.5 .o009 
7.0 .oO04 
6.4 .m 
5.4 .ooO1 
4.8 .OOO1 
4.4 .ooo4 
3.9 .ooO1 
3.5 .m 
3.1 .m 
2.9 .m 
2.6 .m 
2.5 .OOO1 
2.4 7.9 x 10-s 
2.3 .m 
2.1 6.1 X lo-' 
1.90 9.7 x 10-6 
1.86 6.1 X 10' 

1.63 1.3 X lo-' 
1.56 7.8 X 10-0 
1.52 3.0 X 10-0 
1.47 8.3 X 10-0 
1.41 3.2 X 10-0 
1.36 0.8 X 
1.32 2.4 X 
1.29 1.1 x 10-0 
1.25 2.0 x 10-0 
1.21 0.2 x 10-6 
1.12 3.2 X 1O-Il 
1.07 7.2 X 1O-ll 

1.03 3.2 X 1O-Io 

3.3 5.0 x 10-5 

1.71 4.3 x 10-5 

0.66 
.ll 
.oQ 
.07 
.018 
.026 
.026 
.019 
.014 
.013 
.015 
.015 
.012 
.015 
.012 
.021 
.011 
.008 
.012 
.013 
.012 
.012 
.mi 
.006 
.001 
.001 
.004 
.004 
.0004 
.003 
.002 

= .001 
.002 
.0008 
.0002 
.0006 

23 



TABLE 11.-These data correspond to the right side of table 10. 
but are for the N11 component. 

Period MEM Peak Amplitude 
(minutes) Pioo (EU)' (EU) 

91.4 
45.0 
12.5 
10.2 
7.30 
6.19 
4.62 
4.13 
3.60 
3.30 
2.94 
2.80 
2.41 
2.25 
2.08 
1.N 
1.87 
1.75 
1.63 
1.51 
1.45 
1.37 
1.30 
1.26 
1.19 
1.02 

562.1 
307.6 

.o006 

.0011 

.0032 
9.1 X 10-' 

6.97 X 10-4 

3.07 x 10-4 

0.81 x 10-4 
1.76 x 10-4 

1.05 x 10-4 
0.53 x 10-4 

.& x 10-4 

.ii x 10-4 

.9i x 10-4 

.38 x lo-' 

.i4 x 10-4 

.20 x 10-4 
4.4 x 10-0 
5.9 x 10-6 

.Ea x 10-0 

.55 x 10-0 

.31 X 10-6 
2 4  X 104 

6.7 X 10-o 
1.9 x lo-" 

7.13 
3.73 
.26 
.17 
.a 
.23 
.08 
.13 
.10 
.06 
.07 
.w 
.07 
.07 
.05 
.07 
.05 
.os 
.04 
.04 
.04 
.03 
.04 
.03 
.04 
.oQ 
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Pacific SEAMAP 1961-70 Data for Area 15530-10: Longitude 155"W to 165"W. Latitude 30"N to 36"N. Bathymetry, 
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Pacific SEAMAP 1%1-70 Data for Areas 15636-12. 15642-12. 1683612, and 16842-12: longitude 156"W to 1WW. 
Latitude 26"N to 48"N. Bathymetry, Magnetics, and Gravity. E. F. Chiburis. J. J. Dowling, P. I)ehhger, and M. J. YelEn, 
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